Markscheme

May 2016

Mathematical studies

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Paper 2 Markscheme Instructions to Examiners

Notes: If in doubt about these instructions or any other marking issues, contact your team leader

 for clarification.
1

Abbreviations

M Marks awarded for Method
A Marks awarded for an Answer or for Accuracy
R Marks awarded for clear Reasoning
G Marks awarded for correct solutions obtained from a Graphic Display Calculator, when no working shown.

AG Answer Given in the question and consequently, marks not awarded.
ft Marks that can be awarded as follow through from previous results in the question.

Method of Marking

(a) All marking must be done in RM Assessor using the mathematical studies annotations and in accordance with the current document for guidance in e-marking Mathematical Studies SL. It is essential that you read this document before you start marking.
(b) If a question part is completely correct use the number tick annotations to award full marks. If a part is completely wrong use the $\boldsymbol{A O}$ annotation, otherwise full annotations must be shown.
(c) Working crossed out by the candidate should not be awarded any marks.
(d) Where candidates have written two solutions to a question, only the first solution should be marked.
(e) If correct working results in a correct answer but then further working is developed, indicating a lack of mathematical understanding full marks should not be awarded. In most such cases it will be a single final answer mark that is lost. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal.

Example:

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final (A1) (ignore the further working)
2.	$(x-6)(x+1)$	$x=6$ and -1	Do not award the final (A1)

Example: Calculate the gradient of the line passing through the points $(5,3)$ and $(0,9)$.

Markscheme	Candidates' Scripts ${ }^{\text {arking }}$
$\begin{equation*} \frac{9-3}{0-5} \tag{A1} \end{equation*}$ (M1) Award (M1) for correct substitution in gradient formula $\begin{equation*} =-\frac{6}{5} \tag{A1} \end{equation*}$	(i) $\frac{9-3}{0-5}=-\frac{6}{5}$ (M1) Gradient is $=-\frac{6}{5}$ (There is clear understanding of the gradient.) $y=-\frac{6}{5} x+9$ (ii) $\frac{9-3}{0-5}=-\frac{6}{5}$ (M1) $\begin{equation*} y=-\frac{6}{5} x+9 \tag{AO} \end{equation*}$ (There is confusion about what is required.)

3 Follow-through (ft) Marks

Errors made at any step of a solution affect all working that follows. To limit the severity of the penalty, follow through (ft) marks can be awarded. Markschemes will indicate where it is appropriate to apply follow through in a question with '(ft)'.
(a) Follow through applies only from one part of a question to a subsequent part of the question. Follow through does not apply within the same part.
(b) If an answer resulting from follow through is extremely unrealistic (eg, negative distances or incorrect by large order of magnitude) then the final \boldsymbol{A} mark should not be awarded.
(c) If a question is transformed by an error into a different, much simpler question then follow through may not apply.
(d) To award follow through marks for a question part, there must be working present for that part. An isolated follow through answer, without working is regarded as incorrect and receives no marks even if it is approximately correct.
(e) The exception to the above would be in a question which is testing the candidate's use of the GDC, where working will not be expected. The markscheme will clearly indicate where this applies.
(f) Inadvertent use of radians will be penalized the first time it occurs. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for the use of radians.

Example: Finding angles and lengths using trigonometry

Using the Markscheme

(a) \boldsymbol{A} marks are dependent on the preceding \boldsymbol{M} mark being awarded, it is not possible to award (MO)(A1). Once an (M0) has been awarded, all subsequent \boldsymbol{A} marks are lost in that part of the question, even if calculations are performed correctly, until the next \boldsymbol{M} mark.
The only exception to this will be for an answer where the accuracy is specified in the question - see section 5.
(b) \boldsymbol{A} marks are dependent on the \boldsymbol{R} mark being awarded, it is not possible to award ($\boldsymbol{A 1}$)(R0). Hence the (A1) cannot be awarded for an answer which is correct when no reason or the wrong reason is given.
(c) In paper 2 candidates are expected to demonstrate their ability to communicate mathematics using appropriate working. Answers which are correct but not supported by adequate working will not always receive full marks, these unsupported answers are designated G in the mark scheme as an alternative to the full marks. Example (M1)(A1)(A1)(G2).

Example: Using trigonometry to calculate an angle in a triangle.

Markscheme	Candidates' Scripts	Marking
(a) $\frac{\sin A}{3}=\frac{\sin 30}{4} \quad$ (M1)(A1) Award (M1) for substitution in sine rule formula, (A1) for correct substitutions. $A=22.0^{\circ}(22.0243 \ldots)(\mathbf{A 1})(\mathbf{G 2})$	(i) $\begin{aligned} & \frac{\sin A}{3}=\frac{\sin 30}{4} \\ & A=22.0^{\circ} \end{aligned}$ (ii) $\quad A=22.0^{\circ}$ Note: G marks are used on and the answer is correct.	$(M 1)(A 1)$ (A1) (G2) has been shown

(d) Alternative methods may not always be included. Thus, if an answer is wrong then the working must be carefully analysed in order that marks are awarded for a different method consistent with the markscheme.
Where alternative methods for complete questions are included in the markscheme, they are indicated by 'OR' etc.
(e) Unless the question specifies otherwise, accept equivalent forms. For example: $\frac{\sin \theta}{\cos \theta}$ for $\tan \theta$. On the markscheme, these equivalent numerical or algebraic forms will sometimes be written in brackets after the required answer.
Where numerical answers are required as the final answer to a part of a question in the markscheme, the scheme will show, in order:
the 3 significant figure answer worked through from full calculator display;
the exact value (for example $\frac{2}{3}$ if applicable) ;
the full calculator display in the form $2.83163 \ldots$ as in the example above.
Where answers are given to 3 significant figures and are then used in subsequent parts of the question leading to a different 3 significant figure answer, these solutions will also be given.
(f) As this is an international examination, all valid alternative forms of notation should be accepted. Some examples of these are:

Decimal points: $1.7 ; 1{ }^{\prime} 7 ; 1 \cdot 7 ; 1,7$.
Decimal numbers less than 1 may be written with or without a leading zero: 0.49 or .49 .
Different descriptions of an interval: $3<x<5$; $(3,5)$;] 3, 5 [.
Different forms of notation for set properties (eg, complement): $\quad A^{\prime} ; \bar{A} ; A^{c} ; U-A ;(A ; U \backslash A$.
Different forms of logic notation: $\neg p ; p^{\prime} ; \tilde{p} ; \bar{p} ; \sim p$.

$$
p \Rightarrow q ; p \rightarrow q ; q \Leftarrow p
$$

Significance level may be written as α.
(g) Discretionary marks: There will be very rare occasions where the markscheme does not cover the work seen. In such cases the annotation DM should be used to indicate where an examiner has used discretion. Discretion should be used sparingly and if there is doubt and exception should be raised through RM Assessor to the team leader.

As with previous sessions there will be no whole paper penalty marks for accuracy AP, financial accuracy FP and units UP. Instead these skills will be assessed in particular questions and the marks applied according to the rules given in sections 5, 6 and 7 below.

5 Accuracy of Answers

Incorrect accuracy should be penalized once only in each question according to the rules below.
Unless otherwise stated in the question, all numerical answers should be given exactly or correct to 3 significant figures.

1. If the candidate's answer is seen to 4 sf or greater and would round to the required 3 sf answer, then award (A1) and ignore subsequent rounding.
2. If the candidate's unrounded answer is not seen then award (A1) if the answer given is correctly rounded to 2 or more significant figures, otherwise (AO).
Note: If the candidate's unrounded answer is not seen and the answer is given correct to 1 sf (correct or not), the answer will be considered wrong and will not count as incorrect accuracy. If this answer is used in subsequent parts, then working must be shown for further marks to be awarded.
3. If a correct 2 sf answer is used in subsequent parts, then working must be shown for further marks to be awarded. (This treatment is the same as for following through from an incorrect answer.)

These 3 points (see numbers in superscript) have been summarized in the table below and illustrated in the examples following.

	If candidates final answer is given ...					
	Exact or to 4 or more sf (and would round to the correct 3 sf)	Correct to 3 sf	Incorrect to 3 sf	$\begin{gathered} \text { Correct to } \\ 2 \mathrm{sf}^{3} \end{gathered}$	Incorrect to 2 sf	Correct or incorrect to 1 sf
Unrounded answer seen ${ }^{1}$	Award the final (A1) irrespective of correct or incorrect rounding					
Unrounded answer not seen 2	(A1)	(A1)	(AO)	(A1)	(AO)	(AO)
Treatment of subsequent parts	As per MS		Treat as follow through, only if working is seen. ${ }^{3}$			

Examples:

Markscheme		Candidates' Scripts			Marking
7.44 (7.43798...)	(A1)	(i) $7.43798 \ldots$ is seen followed by 7; 7.4; 7.44; 7.438 etc. (correctly rounded) (ii) $7.43798 \ldots$ is seen followed by 7.437 ; 7.43 etc. (incorrectly rounded)			(A1)
					(A1)
		(iii) (iv)	7.4		(A1)
			7		(AO) (correct to 1 sf)
		(v)	7.5		(AO) rounded to 2 sf)
		(vi)	7.43		(AO) rounded to 3 sf)

Example: ABC is a right angled triangle with angle $\mathrm{ABC}=90^{\circ}, \mathrm{AC}=32 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$. Find (a) the length of BC , (b) The area of triangle ABC .

Markscheme		Ca	's' Scripts	M
(a) $\mathrm{BC}=\sqrt{32^{2}-30^{2}}$ (M1) Award (M1) for correct substitution in Pythagoras' formula $=11.1(\sqrt{124}, 11.1355 \ldots)(\mathrm{cm})$ (A1) (b) Area $=\frac{1}{2} \times 30 \times 11.1355 \ldots$ (M1) Award (M1) for correct substitution in area of triangle formula $=167(167.032 \ldots)\left(\mathrm{cm}^{2}\right) \quad(A 1)(\mathrm{ft})$	(a) $\begin{aligned} & \mathrm{BC}=\sqrt{32^{2}-30^{2}} \\ & 11(\mathrm{~cm}) \\ & \text { (2 sf answer only seen, but correct) }\end{aligned}$ (b) case (i) $\text { Area }=\frac{1}{2} \times 30 \times 11$ (M1) (working shown) $=165\left(\mathrm{~cm}^{2}\right)$ (A1)(ft) case (ii) $=165\left(\mathrm{~cm}^{2}\right)$ (MO)(AO)(ft) (No working shown, the answer 11 is treated as a ft, so no marks awarded here)			

Certain answers obtained from the GDC are worth 2 marks and working will not be seen. In these cases only one mark should be lost for accuracy.
eg, Chi-squared, correlation coefficient, mean

Markscheme	Candidates' Scripts	Marking
Chi-squared	(a) 7.7	(G2)
$7.68(7.67543 \ldots)$ (A2)	(b) 7.67	(G1)
	(c) 7.6	(G1)
	(d) 8	(G0)
	(e) 7	(GO)
	(e) 7.66	(GO)

Regression line

Maximum/minimum/points of intersection

Rounding of an exact answer to 3 significant figures should be accepted if performed correctly. Exact answers such as $\frac{1}{4}$ can be written as decimals to fewer than 3 significant figures if the result is still exact. Reduction of a fraction to its lowest terms is not essential, however where an answer simplifies to an integer this is expected. Fractions that include a decimal in the numerator and/or the denominator are acceptable for showing correct substitution, but not as a final answer.

Ratios of π and answers taking the form of square roots of integers or any rational power of an integer (eg, $\sqrt{13}, 2^{\frac{2}{3}}, \sqrt[4]{5}$,) may be accepted as exact answers. All other powers (eg, of non-integers) and values of transcendental functions such as sine and cosine must be evaluated.

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. In all such cases the final mark is not awarded if the rounding does not follow the instructions given in the question. A mark for specified accuracy can be regarded as a (ft) mark regardless of an immediately preceding (MO).

6 Level of accuracy in finance questions

The accuracy level required for answers will be specified in all questions involving money. This will usually be either whole units or two decimal places. The first answer not given to the specified level of accuracy will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for incorrect accuracy in a financial question.

Example: A financial question demands accuracy correct to 2 dp .

Units in answers

There will be specific questions for which the units are required and this will be indicated clearly in the markscheme. The first correct answer with no units or incorrect units will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one or two mark per paper can be lost for lack of units or incorrect units.
The units are considered only when the numerical answer is awarded (A1) under the accuracy rules given in Section 5.

Example:

Markscheme	Candidates' Scripts			Marking
(a) $37000 \mathrm{~m}^{2}$	(A1)	(a) $36000 \mathrm{~m}^{2}$	(Incorrect answer so units not considered)	
(b)	$3200 \mathrm{~m}^{3}$	(A1)	(b) $3200 \mathrm{~m}^{2}$	
				(AO)
(Incorrect units)				

If no method is shown and the answer is correct but with incorrect or missing units award G marks with a one mark penalty.

8 Graphic Display Calculators
Candidates will often be obtaining solutions directly from their calculators. They must use mathematical notation, not calculator notation. No method marks can be awarded for incorrect answers supported only by calculator notation. The comment 'I used my GDC' cannot receive a method mark.

1. (a) $a=4.2 ; b=74$
(A1)(A1)
[2 marks]
(b) (i) $5.91(\mathrm{~km})$
(A1)(ft)
(ii) 88 (micrograms per cubic metre)
(A1)(ft)
Note: Follow through from part (a) irrespective of working seen.
(iii) -0.956 ($-0.955528 \ldots$...)
(G2)(ft)
Note: Follow through from part (a) irrespective of working seen.
(c) $y=-5.39 x+120(y=-5.38955 \ldots x+119.852 \ldots)$
(A1)(ft)(A1)(ft)
Note: Award (A1)(ft) for -5.39. Award (A1)(ft) for 120. If answer is not an equation award at most (A1)(ft)(AO). Follow through from part (a) irrespective of working seen.
(d) (i) $-5.38955 \ldots \times 14+119.852 \ldots$

Note: Award (M1) for correct substitution into their regression line.
$=44.4(44.3984 \ldots)$
(A1)(ft)(G2)
Note: Follow through from part (c). Accept 44.5 (44.54) from use of 3 significant figure values.
(ii) Ernesto's estimate is not reliable
this is extrapolation
OR
14 km is not within the range (outside the domain) of distances given
Note: Do not accept "14 is too high" or " 14 is an outlier" or "result not valid/not reliable" if explanation not given. Do not award (A1)(R0). Do not accept reasoning based on the strength of r.
2. (a)

(A1)(A1)(A1)(A1)(A1)
Note: Award (A1) for labelled sets B, M and F inside a universal set (label U is not required).
Award (A1) for 40 in central area.
Award (A1) for correct 10, 12, 28 in the other intersecting regions.
Award (A1) for 8, 20 and 17 in correct regions.
Award (A1) for correct 25.
(b) $8+12+20+10+40+28+17+25$
$=160$

Note: Award (M1) for adding all values. Follow through from their Venn Diagram.
(c) (i)

continued...

Question 2 continued
(ii) $20+28+17$

OR
$(100+95-68)-(10+40+12)$
(M1)
$=65$
(A1)(ft)(G2)
Note: Award (M1) for addition of the correct values from their diagram.
Follow through from part (a) or (b) and part (c)(i).
(d) (i) $\frac{100}{160}\left(\frac{5}{8}, 0.625,62.5 \%\right)$
(A1)(A1)(ft)

Note: Award (A1) for correct numerator, (A1)(ft) for correct denominator. Follow through from part (b).
(ii) $\frac{20}{65}\left(\frac{4}{13}, 0.308,30.8 \%\right)(0.307692 \ldots) \quad$ (A1)(ft)(A1)(ft)

Note: Award (A1)(ft) for correct numerator, (A1)(ft) for correct denominator. Follow through from part (a).
(iii) $\frac{90}{160}\left(\frac{9}{16}, 0.563,56.3 \%\right)(0.5625) \quad$ (A1)(ft)(A1)(ft)

Note: Award (A1)(ft) for correct numerator, (A1)(ft) for correct denominator. Follow through from parts (a) and (b).
(e) $\frac{100}{160} \times 850$

Note: Award (M1) for their part (d)(i) multiplied by 850.

$$
=531 \quad(531.25)
$$

(A1)(ft)(G2)
Note: Follow through from part (d)(i) or from part (b).
3. (a) 12 (m)
(A1)
(b) $\quad(h(15)=)-0.2 \times 15^{2}+16 \times 15+12$

Note: Award (M1) for substitution of 15 in expression for h.

$$
=207(\mathrm{~m})
$$

(A1)(G2)
[2 marks]
(c) $\quad h(k)=0$

Note: Award (M1) for setting h to zero.

$$
(k=) 80.7(\mathrm{~s}) \quad(80.7430)
$$

Note: Award at most (M1)(AO) for an answer including $k=-0.743$.
Award (AO) for an answer of 80 without working.
(d) $\quad h^{\prime}(t)=-0.4 t+16$
(A1)(A1)
Note: Award (A1) for $-0.4 t$, (A1) for 16. Award at most (A1)(AO) if extra terms seen. Do not accept x for t.
(e) (i) $-0.4 t+16=0$

Note: Award (M1) for setting their derivative, from part (d), to zero, provided the correct conclusion is stated and consistent with their $h^{\prime}(t)$.

OR

$$
\begin{equation*}
t=\frac{-16}{2 \times(-0.2)} \tag{M1}
\end{equation*}
$$

Note: Award (M1) for correct substitution into axis of symmetry formula, provided the correct conclusion is stated.

$$
(t=) 40(\mathrm{~s})
$$

(ii) $-0.2 \times 40^{2}+16 \times 40+12$

Note: Award (M1) for substitution of 40 in expression for h.

$$
=332(\mathrm{~m})
$$

(A1)(G2)

Question 3 continued
(f) $\quad h(t)=40$

Note: Award (M1) for setting h to 40. Accept inequality sign.

OR

(M1)
Note: Award (M1) for correct sketch. Indication of scale is not required.
78.2 - 1.79 (78.2099... - 1.79005...)

Note: Award (A1) for 1.79 and 78.2 seen.
(total time =) 76.4 (s) (76.4198...)
(A1)(G2)
Note: Award (G1) if the two endpoints are given as the final answer with no working.
4. Units are required in parts (c), and (f)(ii).
(a) $\quad \tan (58.3)=\frac{\mathrm{VM}}{115}$ OR $\quad 115 \times \tan \left(58.3^{\circ}\right)$
(A1)(M1)
Note: Award (A1) for $115\left(\right.$ ie $\left.\frac{230}{2}\right)$ seen, (M1) for correct substitution into trig formula.

$$
\begin{align*}
& (\mathrm{VM}=) 186.200(\mathrm{~m}) \\
& (\mathrm{VM}=) 186(\mathrm{~m}) \tag{AG}
\end{align*}
$$

(A1)

Note: Both the rounded and unrounded answer must be seen for the final (A1) to be awarded.
[3 marks]
(b) $\mathrm{VO}^{2}+115^{2}=186^{2}$ OR $\sqrt{186^{2}-115^{2}}$
(M1)
Note: Award (M1) for correct substitution into Pythagoras formula. Accept alternative methods.

$$
(\mathrm{VO}=) 146(\mathrm{~m})(146.188 \ldots)
$$

Note: Use of full calculator display for VM gives 146.443...m.
(c) $\frac{1}{3}\left(230^{2} \times 146.188 \ldots\right)$
(M1)

Note: Award (M1) for correct substitution in volume formula.
Follow through from part (b).

$$
=2580000 \mathrm{~m}^{3}\left(2577785 \ldots \mathrm{~m}^{3}\right)
$$

(A1)(ft)(G2)
Note: The answer is $2580000 \mathrm{~m}^{3}$, the units are required. Use of $\mathrm{OV}=146.442$ gives $2582271 \ldots$
m^{3}.
Use of $\mathrm{OV}=146$ gives $2574466 \ldots \mathrm{~m}^{3}$.
(d) $2.58 \times 10^{6}\left(\mathrm{~m}^{3}\right)$
$(A 1)(\mathrm{ft})(\mathrm{A} 1)(\mathrm{ft})$
Note: Award (A1)(ft) for 2.58 and (A1)(ft) for $\times 10^{6}$.
Award (AO)(AO) for answers of the type: $25.8 \times 10^{5}\left(\mathrm{~m}^{3}\right)$. Follow through from part (c).

Question 4 continued
(e) the volume of a wall would be $430000 \times 5 \times 1$
(M1)
Note: Award (M1) for correct substitution into volume formula.
$2150000\left(\mathrm{~m}^{3}\right)$
(A1)(G2)
which is less than the volume of the pyramid
(R1)(ft)
Ahmad is correct.
(A1)(ft)
OR
the length of the wall would be $\frac{\text { their part (c) }}{5 \times 1 \times 1000}$
Note: Award (M1) for dividing their part (c) by 5000.

516 (km)
which is more than the distance from Paris to Amsterdam Ahmad is correct.
(A1)(ft)(G2)
(R1)(ft)
(A1)(ft)

Note: Do not award final (A1) without an explicit comparison. Follow through from part (c) or part (d). Award (R1) for reasoning that is consistent with their working in part (e); comparing two volumes, or comparing two lengths.
continued...

Question 4 continued
(f) (i) $\mathrm{AW}^{2}=160^{2}+230^{2}-2 \times 160 \times 230 \times \cos \left(15^{\circ}\right)$
(M1)(A1)
Note: Award (M1) for substitution into cosine rule formula, (A1) for correct substitution.

$$
\mathrm{AW}=86.1 \text { (m) } \quad(86.0689 \ldots)
$$

Note: Award (MO)(AO)(AO) if BAW or AWB is considered to be a right angled triangle.
(ii) \quad area $=\frac{1}{2} \times 230 \times 160 \times \sin \left(15^{\circ}\right) \quad$ (M1)(A1)

Note: Award (M1) for substitution into area formula, (A1) for correct substitutions.

$$
=4760 \mathrm{~m}^{2}\left(4762.27 \ldots \mathrm{~m}^{2}\right)
$$

(A1)(G2)
Note: The answer is $4760 \mathrm{~m}^{2}$, the units are required.
5. (a) (i) 8450 (euro)
(ii) 8000×1.05

Note: Award (M1) for
8000×1.05 OR $(8000 \times 0.05)+8000$.

$$
=8400 \text { (euro) }
$$

(A1)(G3)
(b) (i) $8000+450(n-1)($ accept $450 n+7550)$
(M1)(A1)
Note: Award (M1) for substitution in arithmetic sequence formula; (A1) for correct substitutions.
(ii) $8000 \times 1.05^{n-1}$
(M1)(A1)
Note: Award (M1) for substitution in geometric sequence formula, (A1) for correct substitutions.
(c) $8000+450(n-1) \geq 8000 \times 1.05^{n-1}$

Note: Award (M1) for setting a correct inequality using their expressions for (b)(i) and (b)(ii). Accept an equation.

OR
list of at least 4 correct terms of each sequence
(M1)
Note: Award (M1) for correct lists corresponding to their answers for parts (b)(i) and (b)(ii).

6
(A1)(ft)(G2)
Note: Value must be an integer for the final (A1) to be awarded. Follow through from parts (b)(i) and (b)(ii). Award (G1) for a final answer of $6.70018 \ldots$ seen without working.
(d) (i) $S_{15}=\frac{8000 \times\left(1.05^{15}-1\right)}{1.05-1}$
(M1)(A1)(ft)

Note: Award (M1) for substitution into geometric series formula and (A1) for correct substitution of u_{1} and their r from part (b)(ii). Follow through from part (b)(ii).

OR
$8000+8400+8820 \ldots+15839.45$
(M1)(A1)(ft)
Note: Follow through from part (b)(ii).
$=173000$ (euro) (172629...)
(A1)(ft)(G2)
(ii) $S_{15}=\frac{15}{2}(2 \times 8000+450 \times 14)$
(M1)(A1)(ft)

Note: Award (M1) for substitution into arithmetic series formula and (A1) for correct substitution, using their first term and their last term from part (b)(i), or their u_{1} and d. Follow through from part (b)(i).

OR
$8000+8450+8900 \ldots+14300$
(M1)(A1)(ft)
Note: Follow through from part (b)(i).
$=167000$ (euro) (167250)
(A1)(ft)(G2)
Antonio does not earn more than Barbara (his total salary will be less than Barbara's)

Note: Award (A1)(ft) for a final answer that is consistent with their part (d)(i) and (d)(ii). Accept "Barbara earns more". The final (A1) can only be awarded if two total salaries are seen.
6. (a) $4 \times 2^{-0}+1.5 \times 0-5$

Note: Award (M1) for substitution of 0 into the expression for $f(x)$.

$$
=-1
$$

(A1)(G2)
(b) $\quad-0.538(-0.537670 \ldots)$ and 3
(A1)(A1)
Note: Award at most ($\boldsymbol{A} \mathbf{O} \mathbf{(} \mathbf{(A 1)}$)(ft) if answer is given as pairs of coordinates.
(c)

(A1)(A1)(A1)(ft)(A1)(ft)
Note: Award (A1) for labels and some indication of scale in the correct given window.
Award (A1) for smooth curve with correct general shape with $f(-2)>f(6)$ and minimum to the right of the y-axis.
Award (A1)(ft) for correct y-intercept (consistent with their part (a)).
Award (A1)(ft) for approximately correct x-intercepts (consistent with their part (b), one zero between -1 and 0 , the other between 2.5 and 3.5).
continued...

Question 6 continued
(d) (i) $\quad g^{\prime}(1)=f(1)=4 \times 2^{-1}+1.5-5$

Note: Award (M1) for substitution of 1 into $f(x)$.

$$
=-1.5
$$

(A1)(G2)
(ii) $3=-1.5 \times 1+c \quad \mathbf{O R}(y-3)=-1.5(x-1)$

Note: Award (M1) for correct substitution of gradient and the point $(1,3)$ into the equation of a line. Follow through from (d)(i).
$y=-1.5 x+4.5$
(A1)(ft)(G2)

